Crystal-to-Crystal synthesis of photocatalytic MOFs for visible-light reductive coupling and mechanistic investigations.

CHEMSUSCHEM(2020)

引用 2|浏览11
暂无评分
摘要
Postmodification of reticular materials with well-defined catalysts is an appealing approach to produce new catalytic functional materials with improved stability and recyclability, but also to study catalysis in confined spaces. A promising strategy to this end is the postfunctionalization of crystalline and robust metal-organic frameworks (MOFs) to exploit the potential of crystal-to-crystal transformations for further characterization of the catalysts. In this regard, two new photocatalytic materials, MOF-520-PC1 and MOF-520-PC2, are straightforwardly obtained by the postfunctionalization of MOF-520 with perylene-3-carboxylic acid (PC1) and perylene-3-butyric acid (PC2). The single crystal-to-crystal transformation yielded the X-ray diffraction structure of catalytic MOF-520-PC2. The well-defined disposition of the perylenes inside the MOF served as suitable model systems to gain insights into the photophysical properties and mechanism by combining steady-state, time-resolved, and transient absorption spectroscopy. The resulting materials are active organophotoredox catalysts in the reductive dimerization of aromatic aldehydes, benzophenones, and imines under mild reaction conditions. Moreover, MOF-520-PC2 can be applied for synthesizing gram-scale quantities of products in continuous-flow conditions under steady-state light irradiation. This work provides an alternative approach for the construction of well-defined, metal-free, MOF-based catalysts.
更多
查看译文
关键词
C-C coupling,crystal-to-crystal synthesis,metal-organic frameworks,photochemistry,X-ray diffraction
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要