Spermine oxidase mediates Helicobacter pylori -induced gastric inflammation, DNA damage, and carcinogenic signaling

ONCOGENE(2020)

引用 38|浏览70
暂无评分
摘要
Helicobacter pylori infection is the main risk factor for the development of gastric cancer, the third leading cause of cancer death worldwide. H. pylori colonizes the human gastric mucosa and persists for decades. The inflammatory response is ineffective in clearing the infection, leading to disease progression that may result in gastric adenocarcinoma. We have shown that polyamines are regulators of the host response to H. pylori , and that spermine oxidase (SMOX), which metabolizes the polyamine spermine into spermidine plus H 2 O 2 , is associated with increased human gastric cancer risk. We now used a molecular approach to directly address the role of SMOX, and demonstrate that Smox -deficient mice exhibit significant reductions of gastric spermidine levels and H. pylori -induced inflammation. Proteomic analysis revealed that cancer was the most significantly altered functional pathway in Smox −/− gastric organoids. Moreover, there was also less DNA damage and β-catenin activation in H. pylori -infected Smox −/− mice or gastric organoids, compared to infected wild-type animals or gastroids. The link between SMOX and β-catenin activation was confirmed in human gastric organoids that were treated with a novel SMOX inhibitor. These findings indicate that SMOX promotes H. pylori -induced carcinogenesis by causing inflammation, DNA damage, and activation of β-catenin signaling.
更多
查看译文
关键词
Gastric cancer,Inflammation,Mechanisms of disease,Medicine/Public Health,general,Internal Medicine,Cell Biology,Human Genetics,Oncology,Apoptosis
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要