Measurements of $\bar{\nu}_{\mu}$ and $\bar{\nu}_{\mu} + \nu_{\mu}$ charged-current cross-sections without detected pions nor protons on water and hydrocarbon at mean antineutrino energy of 0.86 GeV

Abe K., Akhlaq N., Akutsu R.,Ali A.,Alt C.,Andreopoulos C., Anthony L.,Antonova M.,Aoki S.,Ariga A., Arihara T.,Asada Y., Ashida Y., Atkin E. T., Awataguchi Y., Ban S., Barbi M.,Barker G. J., Barr G., Barrow D., Barry C., Batkiewicz-Kwasniak M., Beloshapkin A., Bench F., Berardi V., Berkman S., Berns L.,Bhadra S., Bienstock S., Blondel A., Bolognesi S., Bonus T., Bourguille B.,Boyd S. B., Brailsford D., Bravar A.,Berguño D. Bravo, Bronner C., Bron S.,Bubak A.,Avanzini M. Buizza, Calcutt J., Campbell T., Cao S., Cartwright S. L., Catanesi M. G., Cervera A., Chappell A., Checchia C., Cherdack D., Chikuma N., Christodoulou G., Cicerchia M., Coleman J.,Collazuol G., Cook L., Coplowe D., Cudd A., Dabrowska A., De Rosa G., Dealtry T., Denner P. F., Dennis S. R., Densham C., Di Lodovico F., Dokania N., Dolan S., Doyle T. A., Drapier O., Dumarchez J.,Dunne P., Eguchi A., Eklund L.,Emery-Schrenk S., Ereditato A.,Fernandez P., Feusels T., Finch A. J., Fiorentini G. A., Fiorillo G., Francois C., Friend M.,Fujii Y., Fujita R., Fukuda D., Fukuda R., Fukuda Y., Fusshoeller K., Gameil K., Giganti C., Golan T., Gonin M., Gorin A., Guigue M., Hadley D. R., Haigh J. T., Hamacher-Baumann P., Hartz M., Hasegawa T., Hassani S., Hastings N. C., Hayashino T., Hayato Y., Hiramoto A., Hogan M., Holeczek J., Van N. T. Hong, Honjo T., Iacob F.,Ichikawa A. K.,Ikeda M., Ishida T., Ishii T., Ishitsuka M., Iwamoto K., Izmaylov A., Izumi N., Jakkapu M., Jamieson B.,Jenkins S. J., Jesús-Valls C., Jiang M.,Johnson S.,Jonsson P., Jung C. K., Junjie X., Kabirnezhad M.,Kaboth A. C., Kajita T., Kakuno H., Kameda J., Karlen D., Kasetti K., Kataoka Y., Katayama Y., Katori T.,Kato Y., Kearns E., Khabibullin M., Khotjantsev A., Kikawa T., Kikutani H.,Kim H.,Kim J.,King S., Kisiel J., Knight A., Knox A., Kobata T.,Kobayashi T., Koch L., Koga T., Konaka A., Kormos L. L., Koshio Y., Kostin A., Kowalik K., Kubo H., Kudenko Y., Kukita N.,Kuribayashi S., Kurjata R., Kutter T.,Kuze M., Labarga L., Lagoda J., Lamoureux M., Last D., Laveder M., Lawe M., Licciardi M., Lindner T., Litchfield R. P., Liu S. L.,Li X., Longhin A., Ludovici L.,Lu X., Lux T., Machado L. N., Magaletti L., Mahn K., Malek M.,Manly S., Maret L., Marino A. D., Marti-Magro L., Martin J. F., Maruyama T., Matsubara T., Matsushita K.,Matveev V., Mauger C., Mavrokoridis K., Mazzucato E., McCarthy M., McCauley N., McElwee J.,McFarland K. S., McGrew C., Mefodiev A., Metelko C., Mezzetto M., Minamino A., Mineev O., Mine S., Miura M.,Bueno L. Molina, Moriyama S., Morrison J., Mueller Th. A., Munteanu L., Murphy S., Nagai Y., Nakadaira T., Nakahata M., Nakajima Y.,Nakamura A.,Nakamura K. G.,Nakamura K., Nakayama S., Nakaya T., Nakayoshi K., Nantais C., Naseby C. E. R., Ngoc T. V., Niewczas K., Nishikawa K., Nishimura Y., Noah E., Nonnenmacher T. S., Nova F., Novella P., Nowak J., Nugent J. C., O'Keeffe H. M., O'Sullivan L., Odagawa T.,Ogawa T., Okada R., Okumura K., Okusawa T., Oser S. M., Owen R. A., Oyama Y., Palladino V., Palomino J. L., Paolone V., Pari M., Parker W. C., Parsa S.,Pasternak J., Paudyal P., Pavin M., Payne D., Penn G. C., Pickering L.,Pidcott C., Pintaudi G.,Guerra E. S. Pinzon, Pistillo C., Popov B., Porwit K., Posiadala-Zezula M., Pritchard A., Quilain B., Radermacher T., Radicioni E., Radics B., Ratoff P. N., Reinherz-Aronis E., Riccio C., Rondio E., Roth S., Rubbia A.,Ruggeri A. C., Ruggles C., Rychter A.,Sakashita K., Sánchez F., Santucci G., Schloesser C. M.,Scholberg K., Schwehr J., Scott M.,Seiya Y., Sekiguchi T., Sekiya H., Sgalaberna D., Shah R., Shaikhiev A., Shaker F., Shaykina A., Shiozawa M., Shorrock W., Shvartsman A., Smirnov A., Smy M., Sobczyk J. T., Sobel H.,Soler F. J. P.,Sonoda Y., Steinmann J., Suvorov S.,Suzuki A.,Suzuki S. Y.,Suzuki Y., Sztuc A. A.,Tada M., Tajima M., Takeda A., Takeuchi Y.,Tanaka H. K.,Tanaka H. A., Tanaka S., Tanihara Y., Teshima N., Thompson L. F., Toki W., Touramanis C., Towstego T.,Tsui K. M., Tsukamoto T., Tzanov M., Uchida Y., Uno W., Vagins M., Valder S., Vallari Z., Vargas D., Vasseur G., Vilela C., Vinning W. G. S., Vladisavljevic T., Volkov V. V., Wachala T.,Walker J., Walsh J. G.,Wang Y., Wark D., Wascko M. O., Weber A., Wendell R., Wilking M. J., Wilkinson C.,Wilson J. R.,Wilson R. J., Wood K., Wret C., Yamada Y.,Yamamoto K., Yanagisawa C., Yang G., Yano T., Yasutome K.,Yen S., Yershov N., Yokoyama M., Yoshida T.,Yu M., Zalewska A., Zalipska J., Zaremba K., Zarnecki G., Ziembicki M., Zimmerman E. D., Zito M., Zsoldos S., Zykova A.

arxiv(2020)

引用 6|浏览100
暂无评分
摘要
We report measurements of the flux-integrated $\bar{\nu}_\mu$ and $\bar{\nu}_\mu+\nu_\mu$ charged-current cross-sections on water and hydrocarbon targets using the T2K anti-neutrino beam, with a mean neutrino energy of 0.86 GeV. The signal is defined as the (anti-)neutrino charged-current interaction with one induced $\mu^\pm$ and no detected charged pion nor proton. These measurements are performed using a new WAGASCI module recently added to the T2K setup in combination with the INGRID Proton module. The phase space of muons is restricted to the high-detection efficiency region, $p_{\mu}>400~{\rm MeV}/c$ and $\theta_{\mu}<30^{\circ}$, in the laboratory frame. Absence of pions and protons in the detectable phase space of "$p_{\pi}>200~{\rm MeV}/c$ and $\theta_{\pi}<70^{\circ}$", and "$p_{\rm p}>600~{\rm MeV}/c$ and $\theta_{\rm p}<70^{\circ}$" is required. In this paper, both of the $\bar{\nu}_\mu$ cross-sections and $\bar{\nu}_\mu+\nu_\mu$ cross-sections on water and hydrocarbon targets, and their ratios are provided by using D'Agostini unfolding method. The results of the integrated $\bar{\nu}_\mu$ cross-section measurements over this phase space are $\sigma_{\rm H_{2}O}\,=\,(1.082\pm0.068(\rm stat.)^{+0.145}_{-0.128}(\rm syst.)) \times 10^{-39}~{\rm cm^{2}/nucleon}$, $\sigma_{\rm CH}\,=\,(1.096\pm0.054(\rm stat.)^{+0.132}_{-0.117}(\rm syst.)) \times 10^{-39}~{\rm cm^{2}/nucleon}$, and $\sigma_{\rm H_{2}O}/\sigma_{\rm CH} = 0.987\pm0.078(\rm stat.)^{+0.093}_{-0.090}(\rm syst.)$. The $\bar{\nu}_\mu+\nu_\mu$ cross-section is $\sigma_{\rm H_{2}O} = (1.155\pm0.064(\rm stat.)^{+0.148}_{-0.129}(\rm syst.)) \times 10^{-39}~{\rm cm^{2}/nucleon}$, $\sigma_{\rm CH}\,=\,(1.159\pm0.049(\rm stat.)^{+0.129}_{-0.115}(\rm syst.)) \times 10^{-39}~{\rm cm^{2}/nucleon}$, and $\sigma_{\rm H_{2}O}/\sigma_{\rm CH}\,=\,0.996\pm0.069(\rm stat.)^{+0.083}_{-0.078}(\rm syst.)$.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要