Reactivity Improvement Of Ca-Based Co2 Absorbent Modified With Sodium Humate In Cyclic Calcination/Carbonation

ACS omega(2020)

引用 6|浏览3
暂无评分
摘要
The Ca-based sorbent cyclic calcination/carbonation reaction (CCCR) is a high-efficiency technique for capturing CO2 from combustion processes. The CO2 capture ability of CaO modified with sodium humate (HA-Na) (HA-Na/CaO) in long-term calcination/carbonation cycles was investigated. The enhancement mechanism of HA-Na on CCCR was proposed and demonstrated. The effects of carbonation temperature, reaction duration, and the addition amount of HA-Na on the carbonation rate of the CaO adsorbent were also studied. HA-Na/CaO is allowed to react 20 min at the optimum conditions for calcination (920 degrees C, 100% N-2) and for carbonation (700 degrees C, 15% CO2, 85% N-2), respectively. HA-Na plays a key role in the CCCR process, and the carbonation conversion rate is lifted obviously. The maximum conversion rate of HA-Na/CaO is 23% higher than that of CaO in the first cycle. After 20 cycles, the conversion rate of HA-Na/CaO is still 0.28, while that of CaO is only 0.15. The carbonation conversion rate for HA-Na/CaO is improved by 86% compared to CaO. In addition, the characteristics of calcined sorbents are analyzed by scanning electron microscopy (SEM), X-ray diffraction (XRD), and Brunauer-Emmett-Teller (BET) methods.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要