Realization Of The Radiance Scale Using Transfer Function Of The Laser-Based Optical System

INTERNATIONAL JOURNAL OF OPTICS(2020)

引用 0|浏览0
暂无评分
摘要
This work aims to determine the radiance responsivity to be used in the calibration of polychromatic radiation sources with low uncertainty. To realize the radiance, Ar-ion, He-Ne, and Nd-YAG lasers as well as an integrating sphere with a 0.15 m diameter are used to obtain radiation sources having Lambertian distributions. Then, a silicon photodiode-based reflection-type trap detector with calibrated precision aperture, which is traceable to a liquid helium cooled laser-based cryogenic radiometer, is used to measure the photocurrent corresponding to each wavelength and thereby to obtain radiance. The proposed system, which measures the spectral current response of this laser-based radiance, is a double-grating monochromator with a 2 x 300 mm focal length and triple gratings in each of its turrets. First, the radiance of the laser beam that emerged from the integrating sphere is calculated, and then the radiance responsivity of the system is obtained by measuring the photocurrent outputted from the exit slit of the monochromator at each laser wavelength. Finally, the spectral radiance values of the polychromatic lamps are obtained using the radiance responsivity of the system. Consequently, the study aims to develop the derivation and better understand traceability of the other radiometric and photometric quantities with low uncertainty from the fundamental radiometric radiance unit. Measurement results obtained in the expanded measurement uncertainty scale are determined using both classical and Monte Carlo methods.
更多
查看译文
关键词
Transient Temperature Measurement,Radiometric Calibration,Reflective Solar Bands,Satellite Sensors
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要