Sub-seasonal and diurnal variability in lightning and storm activity over the Yangtze River Delta, China during Meiyu season

JOURNAL OF CLIMATE(2020)

引用 9|浏览130
暂无评分
摘要
Using 5 years of operational Doppler radar, cloud-to-ground (CG) lightning observations, and National Centers for Environmental Prediction reanalysis data, this study examined the spatial and temporal characteristics of and correlations between summer storm and lightning activity over the Yangtze River Delta (YRD), with a focus on subseasonal variability and diurnal cycles. The spatiotemporal features of storm top, duration, maximum reflectivity, size, and cell-based vertical integrated liquid water were investigated using the Storm Cell Identification and Tracking algorithm. Our results revealed that there was high storm activity over the YRD, with weak diurnal variations during the mei-yu period. Specifically, storms were strongly associated with mei-yu fronts and exhibited a moderate size, duration, and intensity. On average, afternoon storms exhibited stronger reflectivity and higher storm tops than morning storms, as evidenced by the afternoon peak in CG lightning. The storm intensity strengthened in the post-mei-yu period, due to an increase in atmospheric instability; this was accompanied by a higher frequency of CG lighting. The diurnal cycles of storm frequency and CG lightning in the post-mei-yu period followed a unimodal pattern with an afternoon peak. This is attributable to increased thermodynamic instability in the afternoon, as little diurnal variation was observed for wind shear and moisture. An inverse correlation between lightning occurrence and mean peak current (MPC) for negative CG lightning was evident during the pre-mei-yu and mei-yu periods. The diurnal variation in MPC for negative CG lightning agreed well with that for storm intensity.
更多
查看译文
关键词
Lightning,Convective storms,Radars,Radar observations,Diurnal effects
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要