Automatic Detection of Learner Engagement Using Machine Learning and Wearable Sensors

Journal of Behavioral and Brain Science(2020)

引用 11|浏览7
暂无评分
摘要
Training can now be delivered on a large scale through mobile and web-based platforms in which the learner is often distanced from the instructor and their peers. In order to optimize learner engagement and maximize learning in these contexts, instructional content and strategies must be engaging. Key to the development and study of such content and strategies, and adaptation of instructional techniques when learners become disengaged, is the ability to objectively assess engagement in real-time. Previous self-reported metrics, or expensive EEG-based engagement measures are not appropriate for large-scale platforms due to their complexity and cost. Here we describe the development and testing of a measurement and classification technique that utilizes non-invasive physiological and behavioral monitoring technology to directly assess engagement in classroom, simulation, and live training environments. An experimental study was conducted with 45 students and first responders in a unmanned aircraft systems (UAS) training program to assess the ability to accurately assess learner engagement and discriminate between levels of learner engagement within classroom, simulation and live environments via physiological and behavioral inputs. A series of engagement classifiers were developed using cardiovascular, respiratory, electrodermal, movement, and eye-tracking features that were able to successfully classify engagement levels at an accuracy level of 85% with eye-tracking features included or 81% without eye-tracking features. This approach is capable of monitoring, assessing, and tracking learner engagement across learning situations and contexts, and providing real-time and after action feedback to support instructors in modulating learner engagement.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要