Incorporation of Incompatible Strontium and Barium Ions into Calcite (CaCO3) through Amorphous Calcium Carbonate

MINERALS(2020)

引用 18|浏览11
暂无评分
摘要
Calcite is a ubiquitous mineral in nature. Heavy alkaline-earth elements with large ionic radii such as Sr2+ and Ba2+ are highly incompatible to calcite. Our previous study clarified that incompatible Sr2+ ions can be structurally incorporated into calcite through crystallization from amorphous calcium carbonate (ACC). In this study, we synthesized Sr-doped calcite with Sr/(Sr + Ca) up to 30.7 +/- 0.6 mol% and Ba-doped calcite with Ba/(Ba + Ca) up to 68.6 +/- 1.8 mol%. The obtained Ba-doped calcite samples with Ba concentration higher than Ca can be interpreted as Ca-containing barium carbonates with the calcite structure which have not existed so far because barium carbonate takes the aragonite structure. X-ray diffraction (XRD) patterns of the Sr-doped and Ba-doped calcite samples obtained at room temperature showed that reflection 113 gradually weakened with increasing Sr/(Sr + Ca) or Ba/(Ba + Ca) ratios. The reflection 113 disappeared at Ba/(Ba + Ca) higher than 26.8 +/- 1.6 mol%. Extinction of reflection 113 was reported for pure calcite at temperatures higher than 1240 K, which was attributed to the rotational (dynamic) disorder of CO32- in calcite. Our Molecular Dynamics (MD) simulation on Ba-doped calcite clarified that the CO32- ions in Ba-doped calcites are in the static disorder at room temperature. The CO32- ions are notable tilted and displaced from the equilibrium position of pure calcite.
更多
查看译文
关键词
calcite,amorphous calcium carbonate,disorder,MD simulation
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要