Complex scalar dark matter in the gauged two-Higgs-doublet model

PHYSICAL REVIEW D(2020)

引用 14|浏览10
暂无评分
摘要
The complex scalar dark matter (DM) candidate in the gauged two-Higgs-doublet model, stabilized by a peculiar hidden parity (h parity), is studied in detail. We explore the parameter space for the DM candidate by taking into account the most recent DM constraints from various experiments, in particular, the PLANCK relic density measurement and the current DM direct detection limit from XENON1T. We separate our analysis in three possible compositions for the mixing of the complex scalar. We first constrain our parameter space with the vacuum stability and perturbative unitarity conditions for the scalar potential, LHC Higgs measurements, plus Drell-Yan and electroweak precision test constraints on the gauge sector. We find that DM dominated by composition of the inert doublet scalar is completely excluded by further combining the previous constraints with both the latest results from PLANCK and XENON1T. We also demonstrate that the remaining parameter space with two other DM compositions can be further tested by indirect detection like the future Cherenkov Telescope Array gamma-ray telescope.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要