Surface plasmon resonance sensing of Ebola virus: a biological threat

Analytical and Bioanalytical Chemistry(2020)

引用 30|浏览83
暂无评分
摘要
Here, different monoclonal antibodies (mAb1, mAb2 and mAb3) of Ebola virus were screened in a real-time and label-free manner using surface plasmon resonance (SPR) to select an appropriate antibody for biosensor applications against a biological warfare agent. For this purpose, a gold SPR chip was modified with 4-mercaptobenzoic acid (4-MBA), and modification was confirmed by FTIR-ATR and EIS. The 4-MBA-modified gold SPR chip was used for immobilization of the recombinant nucleoprotein of Ebola (EBOV-rNP), and the interactions of mAb1, mAb2 and mAb3 were then investigated to determine the best mAb based on the affinity constant ( K D ), expressed as equilibrium dissociation constant. K D values of 809 nM, 350 pM and 52 pM were found for the interaction of mAb1, mAb2 and mAb3 of Ebola with the immobilized EBOV-rNP, respectively, thus reflecting the high affinity of mAb3. This was confirmed by ELISA results. The thermodynamic parameters (ΔG, ΔH and ΔS) for the interaction between mAb3 and EBOV-rNP were also determined, which revealed that the interaction was spontaneous, endothermic and driven by entropy. The SPR limit of detection of EBOV-rNP with mAb3 was 0.5 pg ml −1 , showing mAb3 to be the best high-affinity antibody in our study. This study has opened up new possibilities for SPR screening of different monoclonal antibodies of BWA through the convergence of materials science and optical techniques.
更多
查看译文
关键词
Nucleoprotein,Ebola virus,Bioweapon,Surface plasmon resonance,Biosensing
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要