Shp-2 And Pdl1 Inhibition Combined With Radiotherapy Enhances Systemic Antitumor Effects In An Anti-Pd1-Resistant Model Of Non-Small-Cell-Lung Cancer

CANCER IMMUNOLOGY RESEARCH(2020)

引用 48|浏览62
暂无评分
摘要
Immune checkpoint inhibitors, such as anti-PD-1/PD-L1, have emerged as promising therapies for advanced non-small cell lung cancer (NSCLC). However, approximately 80% of patients do not respond to immunotherapy given alone because of intrinsic or acquired resistance. Radiotherapy (XRT) can overcome PD-1 resistance and improve treatment outcomes, but its efficacy remains suboptimal. The tyrosine phosphatase SHP-2, expressed in some cancers and in immune cells, has been shown to negatively affect antitumor immunity. Our hypothesis was that SHP-2 inhibition in combination with anti-PD-L1 would enhance immune-mediated responses to XRT and synergistically boost antitumor effects in an anti-PD-1-resistant mouse model. We treated 129Sv/Ev mice with anti-PD-1-resistant 344SQ NSCLC adenocarcinoma with oral SHP099 (a SHP-2 inhibitor) combined with XRT and intra-peritoneal anti-PD-L1. Primary tumors were treated with XRT (three fractions of 12 Gy each), whereas abscopal (out-of-field) tumors were observed but not treated. XRT in combination with SHP099 and anti-PD-L1 promoted local and abscopal responses, reduced lung metastases, and improved mouse survival. XRT also increased SHP-2(+) M1 tumor-associated macrophages in abscopal tumors (P = 0.019). The addition of SHP099 also associated with a higher M1/M2 ratio, greater numbers of CD8(+) T cells, and fewer regulatory T cells. This triple-combination therapy had strong antitumor effects in a mouse model of anti-PD-1-resistant NSCLC and may be a novel therapeutic approach for anti-PD-1-resistant NSCLC in patients.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要