Electronic Structure And Magnetic Properties Of A Titanium(Ii) Coordination Complex

INORGANIC CHEMISTRY(2020)

引用 8|浏览50
暂无评分
摘要
Stable coordination complexes of Ti-II (3d(2)) are relatively uncommon, but are of interest as synthons for low oxidation state titanium complexes for application as potential catalysts and reagents for organic synthesis. Specifically, high-spin Ti-II ions supported by redox-inactive ligands are still quite rare due to the reducing power of this soft ion. Among such Ti complexes is trans-[TiCl2(tmeda)(2)], where tmeda = N,N,N',N'-tetramethylethane-1,2-diamine. This complex was first reported by Gambarotta and co-workers almost 30 years ago, but it was not spectroscopically characterized and theoretical investigation by quantum chemical theory (QCT) was not feasible at that time. As part of our interest in low oxidation state early transition metal complexes, we have revisited this complex and report a modified synthesis and a low temperature (100 K) crystal structure that differs slightly from that originally reported at ambient temperature. We have used magnetometry, high-frequency and -field EPR (HFEPR), and variable-temperature variable-field magnetic circular dichroism (VTVH-MCD) spectroscopies to characterize trans-[TiCl2(tmeda)(2)]. These techniques yield the following S = 1 spin Hamiltonian parameters for the complex: D = -5.23(1) cm(-1), E = -0.88(1) cm(-1), (E/D = 0.17), g = [1.86(1), 1.94(2), 1.77(1)]. This information, in combination with electronic transitions from MCD, was used as input for both classical ligand-field theory (LFT) and detailed QCT studies, the latter including both density functional theory (DFT) and ab initio methods. These computational methods are seldom applied to paramagnetic early transition metal complexes, particularly those with S > 1/2. Our studies provide a complete picture of the electronic structure of this complex that can be put into context with the few other high-spin and mononuclear Ti-II species characterized to date.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要