Direct detection of small molecules using a nano-molecular imprinted polymer receptor and a quartz crystal resonator driven at a fixed frequency and amplitude.

Biosensors & bioelectronics(2020)

引用 25|浏览8
暂无评分
摘要
Small molecule detection is of wide interest in clinical and industrial applications. However, its accessibility is still limited as miniaturisation and system integration is challenged in reliability, costs and complexity. Here we combined a 14.3 MHz quartz crystal resonator (QCR), actuated and analysed using a fixed frequency drive (FFD) method, with a nanomolecular imprinted polymer for label-free, realtime detection of N-hexanoyl-L-homoserine lactone (199 Da), a gram-negative bacterial infection biomarker. The lowest concentration detected (1 μM) without any optimisation was comparable with that of a BIAcore SPR system, an expensive laboratory gold standard, with significant enhancement in sensitivity and specificity beyond the state-of-the-art QCR. The analytical formula-based FFD method can potentially allow a multiplexed "QCR-on-chip" technology, bringing a paradigm shift in speed, accessibility and affordability of small molecule detection.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要