Scaling, rotation, and channeling behavior of helical and skyrmion spin textures in thin films of Te-doped Cu2OSeO3

SCIENCE ADVANCES(2020)

引用 19|浏览39
暂无评分
摘要
Topologically nontrivial spin textures such as vortices, skyrmions, and monopoles are promising candidates as information carriers for future quantum information science. Their controlled manipulation including creation and annihilation remains an important challenge toward practical applications and further exploration of their emergent phenomena. Here, we report controlled evolution of the helical and skyrmion phases in thin films of multiferroic Te-doped Cu2OSeO3 as a function of material thickness, dopant, temperature, and magnetic field using in situ Lorentz phase microscopy. We report two previously unknown phenomena in chiral spin textures in multiferroic Cu2OSeO3: anisotropic scaling and channeling with a fixed-Q state. The skyrmion channeling effectively suppresses the recently reported second skyrmion phase formation at low temperature. Our study provides a viable way toward controlled manipulation of skyrmion lattices, envisaging chirality-controlled skyrmion flow circuits and enabling precise measurement of emergent electromagnetic induction and topological Hall effects in skyrmion lattices.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要