Paeoniflorin Ameliorates Chronic Hypoxia/SU5416-Induced Pulmonary Arterial Hypertension by Inhibiting Endothelial-to-Mesenchymal Transition.

DRUG DESIGN DEVELOPMENT AND THERAPY(2020)

引用 16|浏览18
暂无评分
摘要
Background: Endothelial cells dysfunction is one of the hallmark pathogenic features of pulmonary arterial hypertension (PAH). Paeoniflorin (PF) is a monoterpene glycoside with endothelial protection, vasodilation, antifibrotic, anti-inflammatory and antioxidative properties. However, the effects of PF on PAH remain unknown. Methods: Here, we investigated the efficacy of PF in the SU5416/hypoxia (SuHx) rat model of PAH. Human pulmonary arterial endothelial cells (HPAECs) were exposed to 1% O-2 with or without PF treatment. Results: Hemodynamics analysis showed that prophylactic treatment with PF (300 mg/kg i.g. daily for 21 days) significantly inhibited chronic hypoxia/SU5416-induced elevations of right ventricular systolic pressure (RVSP) and right ventricular hypertrophy index in rats. Meanwhile, PF significantly reduced pulmonary vascular remodeling, as well as alleviated collagen deposition in lungs and right ventricles in SuHx rats. Additionally, PF inhibited SuHx-induced down-regulation of endothelial marker (vascular endothelial cadherin) and upregulation of mesenchymal markers (fibronectin and vimentin) in lung, suggesting that PF could inhibit SuHx-induced endothelial-to-mesenchymal transition (EndMT) in lung. Further in vitro studies confirmed that PF treatment suppressed hypoxia-induced EndMT in HPAECs, which was abolished by the knockdown of bone morphogenetic protein receptor type 2 (BMPR2) in HPAECs. Conclusion: Taken together, our findings suggest that PF ameliorates BMPR2 downregulation-mediated EndMT and thereafter alleviates SuHx-induced PAH in rats.
更多
查看译文
关键词
paeoniflorin,pulmonary arterial hypertension,endothelial-to-mesenchymal transition,BMPR2,hypoxia
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要