Novel Players in the Aging Synapse: Impact on Cognition.

Journal of caffeine and adenosine research(2019)

引用 40|浏览14
暂无评分
摘要
While neuronal loss has long been considered as the main contributor to age-related cognitive decline, these alterations are currently attributed to gradual synaptic dysfunction driven by calcium dyshomeostasis and alterations in ionotropic/metabotropic receptors. Given the key role of the hippocampus in encoding, storage, and retrieval of memory, the morpho- and electrophysiological alterations that occur in the major synapse of this network-the glutamatergic-deserve special attention. We guide you through the hippocampal anatomy, circuitry, and function in physiological context and focus on alterations in neuronal morphology, calcium dynamics, and plasticity induced by aging and Alzheimer's disease (AD). We provide state-of-the art knowledge on glutamatergic transmission and discuss implications of these novel players for intervention. A link between regular consumption of caffeine-an adenosine receptor blocker-to decreased risk of AD in humans is well established, while the mechanisms responsible have only now been uncovered. We review compelling evidence from humans and animal models that implicate adenosine A receptors (AR) upsurge as a crucial mediator of age-related synaptic dysfunction. The relevance of this mechanism in patients was very recently demonstrated in the form of a significant association of the AR-encoding gene with hippocampal volume (synaptic loss) in mild cognitive impairment and AD. Novel pathways implicate AR in the control of mGluR5-dependent NMDAR activation and subsequent Ca dysfunction upon aging. The nature of this receptor makes it particularly suited for long-term therapies, as an alternative for regulating aberrant mGluR5/NMDAR signaling in aging and disease, without disrupting their crucial constitutive activity.
更多
查看译文
关键词
NMDA receptor,adenosine A2A receptor,aging,hippocampus,mGluR5 receptor,memory,synaptic plasticity
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要