Electroreduction of CO 2 to formate on copper based electrocatalyst at high pressures with high energy conversion efficiency.

JOURNAL OF THE AMERICAN CHEMICAL SOCIETY(2020)

引用 159|浏览52
暂无评分
摘要
Electrocatalytic CO2 reduction (CO2RR) to valuable fuels is a promising approach to mitigate energy and environmental problems, but controlling the reaction pathways and products remains challenging. Here a novel Cu2O nanoparticle film was synthesized by square-wave (SW) electrochemical redox cycling of high-purity Cu foils. The cathode afforded up to 98% Faradaic efficiency for electroreduction of CO2 to nearly pure formate under >= 45 atm CO2 in bicarbonate catholytes. When this cathode was paired with a newly developed NiFe hydroxide carbonate anode in KOH/borate anolyte, the resulting two-electrode high-pressure electrolysis cell achieved high energy conversion efficiencies of up to 55.8% stably for long-term formate production. While the high-pressure conditions drastically increased the solubility of CO2 to enhance CO2 reduction and suppress hydrogen evolution, the (111)-oriented Cu2O film was found to be important to afford nearly 100% CO2 reduction to formate. The results have implications for CO2 reduction to a single liquid product with high energy conversion efficiency.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要