Topological Persistence Machine Of Phase Transitions

PHYSICAL REVIEW E(2021)

引用 31|浏览4
暂无评分
摘要
The study of phase transitions using data-driven approaches is challenging, especially when little prior knowledge of the system is available. Topological data analysis is an emerging framework for characterizing the shape of data and has recently achieved success in detecting structural transitions in material science, such as the glass-liquid transition. However, data obtained from physical states may not have explicit shapes as structural materials. We thus propose a general framework, termed "topological persistence machine," to construct the shape of data from correlations in states, so that we can subsequently decipher phase transitions via qualitative changes in the shape. Our framework enables an effective and unified approach in phase transition analysis. We demonstrate the efficacy of the approach in detecting the Berezinskii-Kosterlitz-Thouless phase transition in the classical XY model and quantum phase transitions in the transverse Ising and Bose-Hubbard models. Interestingly, while these phase transitions have proven to be notoriously difficult to analyze using traditional methods, they can be characterized through our framework without requiring prior knowledge of the phases. Our approach is thus expected to be widely applicable and will provide practical insights for exploring the phases of experimental physical systems.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要