Novel Methods for Recording Stress-Strain Curves in Proton Irradiated Material

SCIENTIFIC REPORTS(2020)

引用 2|浏览8
暂无评分
摘要
Proton irradiation is often used as a proxy for neutron irradiation but the irradiated layer is typically <50 μm deep; this presents a problem when trying to obtain mechanical test data as a function of irradiation level. Two novel methodologies have been developed to record stress-strain curves for thin proton-irradiated surface layers of SA-508-4N ferritic steel. In the first case, in-situ loading experiments are carried out using a combination of X-ray diffraction and digital image correlation on the near surface region in order to measure stress and strain, thereby eliminating the influence of the non-irradiated volume. The second approach is to manufacture small-scale tensile specimens containing only the proton irradiated volume but approaching the smallest representative volume of the material. This is achieved by high-speed focused ion beam (FIB) milling though the application of a Xe + Plasma-FIB (PFIB). It is demonstrated that both techniques are capable of recording the early stage of uniaxial flow behaviour of the irradiated material with sufficient accuracy providing a measure of irradiation-induced shift of yield strength, strain hardening and tensile strength.
更多
查看译文
关键词
Characterization and analytical techniques,Mechanical engineering,Mechanical properties,Metals and alloys,Nuclear energy,Scanning electron microscopy,Science,Humanities and Social Sciences,multidisciplinary
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要