Entropic Bonding Of The Type 1 Pilus From Experiment And Simulation

ROYAL SOCIETY OPEN SCIENCE(2020)

引用 0|浏览37
暂无评分
摘要
The type 1 pilus is a bacterial filament consisting of a long coiled proteic chain of subunits joined together by non-covalent bonding between complementing beta-strands. Its strength and structural stability are critical for its anchoring function in uropathogenic Escherichia coli bacteria. The pulling and unravelling of the FimG subunit of the pilus was recently studied by atomic force microscopy experiments and steered molecular dynamics simulations (Alonso-Caballero et al. 2018 Nat. Commun. 9, 2758. (doi:10.1038/s41467-018-05107-6)). In this work, we perform a quantitative comparison between experiment and simulation, showing a good agreement in the underlying work values for the unfolding. The simulation results are then used to estimate the free energy difference for the detachment of FimG from the complementing strand of the neighbouring subunit in the chain, FimF. Finally, we show that the large free energy difference for the unravelling and detachment of the subunits which leads to the high stability of the chain is entirely entropic in nature.
更多
查看译文
关键词
pilus,steered molecular dynamics,atomic force microscopy
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要