Kinetic and mechanistic study of dye sorption onto renewable resource-based doped carbon prepared by a microwave-assisted method

ENVIRONMENTAL TECHNOLOGY(2021)

引用 4|浏览1
暂无评分
摘要
Herein, a facile synthesis of heteroatom doped biochar is reported. The material is characterized and analyzed in detail for its application as a low-cost adsorbent for removal of a toxic dye pollutant, Methylene Blue (MB), from aqueous solution. Synthesized material showed enhanced surface area compared to parent biochar (458 to802 m(2)g(-1)) The adsorbent's performance is investigated using batch adsorption methods with experiments conducted at varying conditions of adsorbent dosage, initial dye concentration (50-500 mg/L), and pH (3-11). Adsorption of MB onto two different adsorbents such as biochar (BC) and doped BC, is fitted using Langmuir and Freundlich isotherms with the experimental data correlating most accurately with Langmuir modelling, indicating chemisorption mechanism of dye onto adsorbent. Maximum monolayer equilibrium adsorption from Langmuir equation is found to be 129.8 and 357.1 mg/g for pure BC and Phosphorus and Nitrogen co-doped BC (PNBC), respectively. Pseudo-first and -second order kinetic models are applied to investigate the adsorption mechanism of PNBC. Adsorption mechanism followed pseudo-second order model well, with correlation coefficients very close to 1. The results indicate that microwave-assisted heteroatom co-doped BC showed superior performance as adsorbent for the adsorption of MB dye from aqueous solution.
更多
查看译文
关键词
Doped carbon, dye adsorption, chemisorption, green chemistry
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要