Development of ratiometric bioluminescent sensors for in vivo detection of bacterial signaling.

ACS chemical biology(2020)

引用 17|浏览15
暂无评分
摘要
Second messenger signaling networks allow cells to sense and adapt to changing environmental conditions. In bacteria, the nearly ubiquitous second messenger molecule cyclic di-GMP coordinates diverse processes such as motility, biofilm formation, and virulence. In bacterial pathogens, these signaling networks allow the bacteria to survive changing environment conditions that are experienced during infection of a mammalian host. While studies have examined the effects of cyclic di-GMP levels on virulence in these pathogens, it has not been possible to visualize cyclic di-GMP levels in real time during the stages of host infection. Towards this goal, we generate the first ratiometric, chemiluminescent biosensor scaffold that selectively responds to c-di-GMP. By engineering the biosensor scaffold, a suite of Venus-YcgR-NLuc (VYN) biosensors is generated that provide extremely high sensitivity (KD < 300 pM) and large changes in bioluminescence resonance energy transfer (BRET) signal (up to 109%). As a proof-of-concept that VYN biosensors can image cyclic di-GMP in tissues, we show that the VYN biosensors function in the context of a tissue phantom model, with only ~103-104 biosensor-expressing E. coli cells required for the measurement. Furthermore, we utilize the biosensor in vitro to assess changes in cyclic di-GMP in V. cholerae grown with different inputs found in the host environment. The VYN sensors developed here can serve as robust in vitro diagnostic tools for high throughput screening, as well as genetically encodable tools for monitoring the dynamics of c-di-GMP in live cells, and lay the groundwork for live cell imaging of c-di-GMP dynamics in bacteria within tissues and other complex environments.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要