Seasonal Hysteresis Of Surface Urban Heat Islands

PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA(2020)

引用 81|浏览35
暂无评分
摘要
Temporal dynamics of urban warming have been extensively studied at the diurnal scale, but the impact of background climate on the observed seasonality of surface urban heat islands (SUHIs) remains largely unexplored. On seasonal time scales, the intensity of urban-rural surface temperature differences (Delta T-s) exhibits distinctive hysteretic cycles whose shape and looping direction vary across climatic zones. These observations highlight possible delays underlying the dynamics of the coupled urban-biosphere system. However, a general argument explaining the observed hysteretic patterns remains elusive. A coarse-grained model of SUHI coupled with a stochastic soil water balance is developed to demonstrate that the time lags between radiation forcing, air temperature, and rainfall generate a rate-dependent hysteresis, explaining the observed seasonal variations of Delta T-s. If solar radiation is in phase with water availability, summer conditions cause strong SUHI intensities due to high rural evaporative cooling. Conversely, cities in seasonally dry regions where evapotranspiration is out of phase with radiation show a summertime oasis effect controlled by background climate and vegetation properties. These seasonal patterns of warming and cooling have significant implications for heat mitigation strategies as urban green spaces can reduce Delta T-s during summertime, while potentially negative effects of albedo management during winter are mitigated by the seasonality of solar radiation.
更多
查看译文
关键词
cities, hysteresis, seasonality, surface temperature, urban heat island
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要