Defatted Rice Bran Supplementation in Diets of Finishing Pigs: Effects on Physiological, Intestinal Barrier, and Oxidative Stress Parameters.

ANIMALS(2020)

引用 11|浏览17
暂无评分
摘要
Simple Summary Most studies on dietary fiber mainly focus on the digestibility of feed nutrients and microbial flora, etc. However, insufficient attention has been paid to the regulation of immune and oxidative stress of the intestinal tract by dietary fiber. This study investigated the effects of varying levels of defatted rice bran replacing corn on physiological, intestinal barrier, and oxidative stress parameters in finishing pigs. Based on the current findings, a high diet of rice bran will not only reduce the level of inflammatory factors in the peripheral blood of finishing pigs, but also enhance the healthy level of the colon through mucin2 and keap1-Nrf2 pathways. Our results can be used as reference for dietary rice bran to improve intestinal health in finishing pigs. Abstract Rice bran is a waste product with low cost and high fiber content, giving it an added advantage over corn and soybean meal, which have to be purchased and always at a relatively higher cost. Under the background of increased attention to sustainable agriculture, it is significant to find alternative uses for this byproduct. A total of 35 finishing pigs were allotted to five dietary treatments: a control group with basal diet and four experimental diets where corn was equivalently substituted by 7%, 14%, 21%, and 28% defatted rice bran (DFRB), respectively. With increasing levels of DFRB, the neutrophil to lymphocyte ratio (NLR) linearly decreased (p < 0.05). In the jejunum, the mRNA level of nuclear factor erythroid-2 related factor-2 (Nrf2) exhibited a quadratic response (p < 0.01) with incremental levels of DFRB. In the colon, the mRNA levels of mucin 2 (MUC2), Nrf2, and NAD(P)H: quinone oxidoreductase 1 (NQO1) were upregulated (linear, p < 0.05) and heme oxygenase-1 (HO-1) was upregulated (linear, p < 0.01). Overall, using DFRB to replace corn decreased the inflammatory biomarkers of serum and showed potential function in modulating the intestinal barrier by upregulating the mRNA expression levels of MUC2 and downregulating that of Nrf2, NQO1, and HO-1 in the colon.
更多
查看译文
关键词
defatted rice bran,blood,intestinal mucosal,oxidative stress,finishing pigs
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要