Synthesis of brass nanowires and their use for organic photovoltaics

Materials Chemistry and Physics(2020)

引用 3|浏览14
暂无评分
摘要
Preponderant electric conductivity, high transmittance properties, and large natural abundance of its main component are striking features of copper nanowire (Cu NW)-based thin films. Because they are easily synthesized via low-cost solution-based processes, copper nanowires are considered an affordable next-generation conductor for transparent electrodes. Copper nanowire applications are expected to become more popular over the next decade. However, copper nanowire itself has a tremendously high surface-to-volume ratio and an abundance of surface atoms which lead to its high reactivity with the external environment. This reactivity presents a challenge for the improvement the long-term stability of copper nanowires, as it directly affects their applications. This novel study demonstrates a process to protect copper nanowires with an ultrathin stable brass layer-Cu/Brass NWs. The final product exhibited a high performance comparable to commonly used electrodes with a low sheet resistance of 30 Ω/sq at 89% transparency. Moreover, the Cu/Brass NWs resisted oxidation corrosion as the amplitude resistance fluctuated only around 3 Ω/sq for 30 days. For performance verification, an organic solar cell was fabricated using a Cu/Brass NW-based transparent electrode. It yielded an efficiency of 5.85%, reaching nearly that of a conventional cell using indium tin oxide. This demonstrates that Cu/Brass NWs are very promising for future application in low-cost optoelectronic devices.
更多
查看译文
关键词
Copper/brass nanowires,Copper nanowire,Electroless Zn plating,Organic solar cell,Transparent electrode
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要