In-Plane Quartz-Enhanced Photoacoustic Spectroscopy

APPLIED PHYSICS LETTERS(2020)

引用 53|浏览18
暂无评分
摘要
An optical gas sensing technique based on in-plane quartz-enhanced photoacoustic spectroscopy (IP-QEPAS) is reported. In IP-QEPAS, the laser beam is aligned in the plane of the quartz tuning fork (QTF) to increase the interaction area between the acoustic wavefront and the QTF. A custom T-shaped QTF with a prong length of 9.4 mm and a resonance frequency of 9.38 kHz was designed and employed in the IP-QEPAS sensor. For comparison, the traditional QEPAS sensor in which the laser beam is perpendicular to the QTF plane (PP-QEPAS) is investigated with the same operating conditions. Theoretical calculations of strain and displacement of the QTF prong were performed to support the advantage of using the IP-QEPAS technique. By selecting water vapor as the gas target, the IP-QEPAS sensor results in a signal more than 40 times higher than that measured with the PP-QEPAS configuration, confirming the potential of this approach. Published under license by AIP Publishing.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要