Diffusion of kinesin motors on cargo can enhance binding and run lengths during intracellular transport

Biophysical Journal(2020)

引用 1|浏览18
暂无评分
摘要
Cellular cargos, including lipid droplets and mitochondria, are transported along microtubules using molecular motors such as kinesins. Many experimental and computational studies of cargos with rigidly attached motors, in contrast to many biological cargos that have lipid surfaces that may allow surface mobility of motors. We extend a mechanochemical 3D computational model by adding coupled-viscosity effects to compare different motor arrangements and mobilities. We show that organizational changes can optimize for different objectives: Cargos with clustered motors are transported efficiently, but are slow to bind to microtubules, whereas those with motors dispersed rigidly on their surface bind microtubules quickly, but are transported inefficiently. Finally, cargos with freely-diffusing motors have both fast binding and efficient transport, although less efficient than clustered motors. These results suggest that experimentally observed changes in motor organization may be a control point for transport. ### Competing Interest Statement The authors have declared no competing interest.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要