Real-Time Operation of Water-Supply Canal Systems under Limited Electrical Power and/or Water Availability

JOURNAL OF WATER RESOURCES PLANNING AND MANAGEMENT(2020)

引用 4|浏览5
暂无评分
摘要
Water-supply systems (WSSs) and electrical power systems (EPSs) are highly interdependent critical infrastructures. The electrical energy required for pumping in WSSs and cooling water required for power plants in EPSs are major interdependencies. Failure of either of the two independently operated infrastructures can lead to a cascading failure of both the systems. A combined operations control methodology for WSSs and EPSs taking into consideration the inherent interdependencies is required to ensure reliable operations. An optimization-simulation model is presented for the real-time operation of water-supply canal systems (WSCSs) under critical conditions during short-term and long-term emergency events such as limited electrical energy and/or limited water availability, electrical grid failures, extreme droughts, or other severe conditions related to natural and manmade disasters. WSCSs are used for the conveyance of raw water from sources such as lakes, reservoirs, or rivers to water treatment plants that supply treated water to consumers through water distribution systems (WDSs). The approach interfaces the optimization-simulation model for WSCSs with an optimization-simulation model for WDSs to provide for a comprehensive decision-making tool for the control of WSCSs and WDSs. Two WSCSs optimization methodologies are presented including a nonlinear programming approach and an optimization-simulation approach that interfaces a genetic algorithm (MATLAB) with the US Army Corps of Engineers Hydraulic Engineering Center's (HEC) River Analysis System (HEC-RAS) simulation model. A steady-state analysis of the WSCSs is performed for each time period of operation. The new methodologies for determining pump and gate operations under limited power and/or water availability are illustrated using two example canal systems.
更多
查看译文
关键词
Water-supply canal systems,Optimization-simulation model,Genetic algorithm,Water-energy nexus,Limited power availability,Limited water availability,Real-time operations
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要