Document Ranking with a Pretrained Sequence-to-Sequence Model

empirical methods in natural language processing(2020)

引用 394|浏览490
暂无评分
摘要
This work proposes the use of a pretrained sequence-to-sequence model for document ranking. Our approach is fundamentally different from a commonly adopted classification-based formulation based on encoder-only pretrained transformer architectures such as BERT. We show how a sequence-to-sequence model can be trained to generate relevance labels as “target tokens”, and how the underlying logits of these target tokens can be interpreted as relevance probabilities for ranking. Experimental results on the MS MARCO passage ranking task show that our ranking approach is superior to strong encoder-only models. On three other document retrieval test collections, we demonstrate a zero-shot transfer-based approach that outperforms previous state-of-the-art models requiring in-domain cross-validation. Furthermore, we find that our approach significantly outperforms an encoder-only architecture in a data-poor setting. We investigate this observation in more detail by varying target tokens to probe the model’s use of latent knowledge. Surprisingly, we find that the choice of target tokens impacts effectiveness, even for words that are closely related semantically. This finding sheds some light on why our sequence-to-sequence formulation for document ranking is effective. Code and models are available at pygaggle.ai.
更多
查看译文
关键词
sequence-to-sequence
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要