Noise-Aware Dynamical System Compilation for Analog Devices with Legno

ASPLOS '20: Architectural Support for Programming Languages and Operating Systems Lausanne Switzerland March, 2020(2020)

引用 8|浏览43
暂无评分
摘要
Reconfigurable analog devices are a powerful new computing substrate especially appropriate for executing computationally intensive dynamical system computations in an energy efficient manner. We present Legno, a compilation toolchain for programmable analog devices. Legno targets the HCDCv2, a programmable analog device designed to execute general nonlinear dynamical systems. To the best of our knowledge, Legno is the first compiler to successfully target a physical (as opposed to simulated) programmable analog device for dynamical systems and this paper is the first to present experimental results for any compiled computation executing on any physical programmable analog device of this class. The Legno compiler synthesizes analog circuits from parametric and specialized blocks and account for analog noise, quantization error, and manufacturing variations within the device. We evaluate the compiled configurations on the Sendyne S100Asy RevU development board on twelve benchmarks from physics, controls, and biology. Our results show that Legno produces accurate computations on the analog device. The computations execute in 0.50-5.92 ms and consume 0.28-5.67 uJ of energy.
更多
查看译文
关键词
Compilers,Analog Computing,Languages
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要