Towards a computational proof of Vizing's conjecture using semidefinite programming and sums-of-squares

Journal of Symbolic Computation(2021)

引用 2|浏览15
暂无评分
摘要
Vizing's conjecture (open since 1968) relates the product of the domination numbers of two graphs to the domination number of their Cartesian product graph. In this paper, we formulate Vizing's conjecture as a Positivstellensatz existence question. In particular, we select classes of graphs according to their number of vertices and their domination number and encode the conjecture as an ideal/polynomial pair such that the polynomial is non-negative on the variety associated with the ideal if and only if the conjecture is true for this graph class. Using semidefinite programming we obtain numeric sum-of-squares certificates, which we then manage to transform into symbolic certificates confirming non-negativity of our polynomials. Specifically, we obtain exact low-degree sparse sum-of-squares certificates for particular classes of graphs.
更多
查看译文
关键词
Vizing's conjecture,Algebraic model,Gröbner basis,Sum-of-squares problems,Semidefinite programming
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要