The HOSTS survey for exozodiacal dust: Observational results from the complete survey

ASTRONOMICAL JOURNAL(2020)

引用 78|浏览97
暂无评分
摘要
The Large Binocular Telescope Interferometer (LBTI) enables nulling interferometric observations across the N band (8 to 13 mu m) to suppress a star's bright light and probe for faint circumstellar emission. We present and statistically analyze the results from the LBTI/Hunt for Observable Signatures of Terrestrial Systems survey for exozodiacal dust. By comparing our measurements to model predictions based on the solar zodiacal dust in the N band, we estimate a 1 sigma median sensitivity of 23 zodis times the solar system dust surface density in its habitable zone (HZ; 23 zodis) for early-type stars and 48 zodis for Sun-like stars, where 1 zodi is the surface density of HZ dust in the solar system. Of the 38 stars observed, 10 show significant excess. A clear correlation of our detections with the presence of cold dust in the systems was found, but none with the stellar spectral type or age. The majority of Sun-like stars have relatively low HZ dust levels (best-fit median: 3 zodis, 1 sigma upper limit: 9 zodis, 95% confidence: 27 zodis based on our N band measurements), while similar to 20% are significantly more dusty. The solar system's HZ dust content is consistent with being typical. Our median HZ dust level would not be a major limitation to the direct imaging search for Earth-like exoplanets, but more precise constraints are still required, in particular to evaluate the impact of exozodiacal dust for the spectroscopic characterization of imaged exo-Earth candidates.
更多
查看译文
关键词
Exozodiacal dust,Debris disks,Habitable zone,Habitable planets
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要