Genome sequencing of gut symbiotic Bacillus velezensis LC1 for bioethanol production from bamboo shoots

Biotechnology for Biofuels(2020)

引用 30|浏览1
暂无评分
摘要
Background Bamboo, a lignocellulosic feedstock, is considered as a potentially excellent raw material and evaluated for lignocellulose degradation and bioethanol production, with a focus on using physical and chemical pre-treatment. However, studies reporting the biodegradation of bamboo lignocellulose using microbes such as bacteria and fungi are scarce. Results In the present study, Bacillus velezensis LC1 was isolated from Cyrtotrachelus buqueti , in which the symbiotic bacteria exhibited lignocellulose degradation ability and cellulase activities. We performed genome sequencing of B. velezensis LC1, which has a 3929,782-bp ring chromosome and 46.5% GC content. The total gene length was 3,502,596 bp using gene prediction, and the GC contents were 47.29% and 40.04% in the gene and intergene regions, respectively. The genome contains 4018 coding DNA sequences, and all have been assigned predicted functions. Carbohydrate-active enzyme annotation identified 136 genes annotated to CAZy families, including GH, GTs, CEs, PLs, AAs and CBMs. Genes involved in lignocellulose degradation were identified. After a 6-day treatment, the bamboo shoot cellulose degradation efficiency reached 39.32%, and the hydrolysate was subjected to ethanol fermentation with Saccharomyces cerevisiae and Escherichia coli KO11, yielding 7.2 g/L of ethanol at 96 h. Conclusions These findings provide an insight for B. velezensis strains in converting lignocellulose into ethanol. B. velezensis LC1, a symbiotic bacteria, can potentially degrade bamboo lignocellulose components and further transformation to ethanol, and expand the bamboo lignocellulosic bioethanol production.
更多
查看译文
关键词
Bacillus velezensis LC1, Carbohydrate-active enzyme, Bamboo shoot, Cellulose, Ethanol
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要