Imaging strain-localized exciton states in nanoscale bubbles in monolayer WSe2 at room temperature

arxiv(2020)

引用 0|浏览84
暂无评分
摘要
In monolayer transition metal dichalcogenides, quantum emitters are associated with localized strain that can be deterministically applied to create designer nano-arrays of single photon sources. Despite an overwhelming empirical correlation with local strain, the nanoscale interplay between strain, excitons, defects and local crystalline structure that gives rise to these quantum emitters is poorly understood. Here, we combine room-temperature nano-optical imaging and spectroscopy of excitons in nanobubbles of localized strain in monolayer WSe2 with atomistic structural models to elucidate how strain induces nanoscale confinement potentials that give rise to highly localized exciton states in 2D semiconductors. Nano-optical imaging of nanobubbles in low-defect monolayers reveal localized excitons on length scales of approximately 10 nm at multiple sites along the periphery of individual nanobubbles, which is in stark contrast to predictions of continuum models of strain. These results agree with theoretical confinement potentials that are atomistically derived from measured topographies of existing nanobubbles. Our results provide one-of-a-kind experimental and theoretical insight of how strain-induced confinement - without crystalline defects - can efficiently localize excitons on length scales commensurate with exciton size, providing key nanoscale structure-property information for quantum emitter phenomena in monolayer WSe2.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要