Chemical sensing with atomically-thin metals templated by a two-dimensional insulator

arxiv(2020)

引用 0|浏览55
暂无评分
摘要
Boosting the sensitivity of solid-state gas sensors by incorporating nanostructured materials as the active sensing element can be complicated by interfacial effects. Interfaces at nanoparticles, grains, or contacts may result in non-linear current-voltage response, high electrical resistance, and ultimately, electric noise that limits the sensor read-out. Here we report the possibility to prepare nominally one atom thin, electrically continuous metals, by straightforward physical vapor deposition on the carbon zero-layer grown epitaxially on silicon carbide. With platinum as the metal, its electrical conductivity is strongly modulated when interacting with chemical analytes, due to charges being transferred to/from Pt. This, together with the scalability of the material, allows us to microfabricate chemiresistor devices for electrical read-out of chemical species with sub part-per-billion detection limits. The two-dimensional system formed by atomically-thin metals open up a route for resilient and high sensitivity chemical detection, and could be the path for designing new heterogeneous catalysts with superior activity and selectivity.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要