A Hybrid Differential Evolution Algorithm and Its Application in Unmanned Combat Aerial Vehicle Path Planning

IEEE ACCESS(2020)

引用 73|浏览16
暂无评分
摘要
CIPDE and JADE are two powerful and effective Differential Evolution (DE) algorithms with strong exploration and exploitation capabilities. In order to take advantage of these two algorithms, we present a hybrid differential evolution algorithm combining modified CIPDE (MCIPDE) with modified JADE (MJADE) called CIJADE. In CIJADE, the population is first partitioned into two subpopulations according to the fitness value, i.e., superior and inferior subpopulations, to maintain the population diversity. The superior subpopulation evolves using the operation defined in MCIPDE. The MCIPDE adds an external archive to the mutation scheme to enhance the population diversity and exploration capability of original CIPDE. While the inferior subpopulation evolves using the operation defined in MJADE. The MJADE modifies the original JADE by adjusting the parameter p in linear decreasing way to balance the exploration and exploitation ability of original JADE. A new crossover operation is designed to original JADE to deal with the problem of stagnation. Furthermore, the parameters CR and F values of CIJADE are updated according to a modified parameter adaptation strategy in each generation. We validate the performance of the proposed CIJADE algorithm over 28 benchmark functions of the CEC2013 benchmark set. The experimental results indicate that the proposed CIJADE performs better than the eleven popular state-of-the-art DE variants. What's more, we apply the proposed CIJADE to deal with Unmanned Combat Aerial Vehicle (UCAV) path planning problem. The simulation results show that the proposed CIJADE can efficiently find the optimal or near optimal flight path for UCAV.
更多
查看译文
关键词
Differential evolution,hybrid algorithm,modified CIPDE,modified JADE,UCAV path planning
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要