Disk-shaped magnetic particles for cancer therapy

APPLIED PHYSICS REVIEWS(2020)

引用 32|浏览49
暂无评分
摘要
Magnetic disks are a new generation of nanoparticles with outstanding properties to face biomedical challenges as a cancer treatment. The key features of their suitability are the ability of rotation (torque), the high dispersion capability, and the easy manipulation under low magnetic fields. These properties make disk-shaped particles ideal magnetomechanical actuators to damage cancer cell integrity, deliver antitumor drugs, generate heat (magnetic hyperthermia), or separate cancer cells for early detection. Since the experimental demonstration of the capability of destroying brain cancer cells by the force exerted from rotating Ni80Fe20 microdisks, important advances have been reported on disks composed of different magnetic materials and dimensions. Here, we present the evolution of a decade-old research field by combining the discussion of in vitro experiments available in the literature with our most recent results. More importantly, we compare the torque and dispersion capability of each type of magnetic disk in order to promote the investigation toward the most efficient magnetomechanical actuator to destroy cancer cells.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要