Snow depth in Dhundi: an estimate based on weighted bias corrected differential phase observations of dual polarimetric bi-temporal Sentinel-1 data

INTERNATIONAL JOURNAL OF REMOTE SENSING(2020)

引用 13|浏览12
暂无评分
摘要
The studies on snow depth comprise a crucial area of research in the Indian Himalayas, where the seasonal snow cover primarily drives the rivers and significant water resources. In this paper, the initial estimates of the line of sight displacement obtained using differential interferometric phase in VV and VH polarizations using Sentinel-1 bi-temporal dual polarimetric SAR data corresponding to snow covered and snow free land cover, are improved by applying bias corrections for the snow phase and for residual errors in displacement derived from the corrected snow phase. The bias for the snow phase is computed from the observed phase in VV and VH polarizations for the snow free area and the bias for the residual errors is computed by observing the stationary pixels identified in the snow free area using a digital elevation model. The snow depth is computed as a weighted sum of the corrected displacements in the VV and VH polarization, with the weights derived using the local incidence angle. The snow depth results based on the proposed approach was evaluated with respect to field measurements and a coefficient of determination of 0.628 was observed with an improvement of similar to 0.4 as compared to the displacement observed in the VV and VH channel using the conventional method.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要