Strain Engineering On The Metal-Insulator Transition Of Vo2/Tio2 Epitaxial Films Dependent On The Strain State Of Vanadium Dimers

APPLIED PHYSICS LETTERS(2019)

引用 20|浏览30
暂无评分
摘要
In this letter, a series of vanadium dioxide (VO2) epitaxial films were deliberately deposited on TiO2 substrates with different orientations [(001), (110), and (101)], in an attempt to gain insights into the strained VO2 epitaxial film. We found in-plane [100] and [1-10] directions, obviously anisotropic metal-insulator transition (MIT) in (110)-oriented VO2 films. In combination with synchrotron radiation high-resolution x-ray diffraction characterizations, electronic transport data reveal that the critical temperature of MIT depends on the strain state of the dimeric vanadium atomic chain along the c axis of the rutile phase. The anisotropy of MIT is closely related to the orientation of the VO2 films, which is caused by the varied orientation configuration of V-V atomic chain dimerization in the films. Soft x-ray absorption spectroscopy results further indicate that this anisotropy may be driven by the directional hybridization of O 2p and V 3d orbitals with respect to the orientation of VO2 thin films. The polarization-dependent V L-edge and O K-edge XAS data suggest that the elongation of the apical V-O bond length increases the p-d orbital overlap; thus, the energy level of the d(//) orbital is raised relative to that of the pi* orbital. These anisotropic MIT behaviors will help us to understand how the strain engineering depends on the strain state of vanadium dimers in VO2 films.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要