Identification of a Neisseria gonorrhoeae Histone Deacetylase: Epigenetic Impact on Host Gene Expression.

PATHOGENS(2020)

引用 11|浏览18
暂无评分
摘要
Epigenetic reprogramming in macrophages is termed trained innate immunity, which regulates immune tolerance and limits tissue damage during infection. Neisseria gonorrhoeae is a strict human pathogen that causes the sexually transmitted infection termed gonorrhea. Here, we report that this pathogen harbors a gene that encodes a histone deacetylase-like enzyme (Gc-HDAC) that shares high 3D-homology to human HDAC1, HDAC2 and HDAC8. A Gc-HDAC null mutant was constructed to determine the biologic significance of this gene. The results showed that WT gonococci reduced the expression of host defense peptides LL-37, HBD-1 and SLPI in macrophages when compared to its Gc-HDAC-deficient isogenic strain. The enrichment of epigenetic marks in histone tails control gene expression and are known to change during bacterial infections. To investigate whether gonococci exert epigenetic modifications on host chromatin, the enrichment of acetylated lysine 9 in histone 3 (H3K9ac) was investigated using the TLR-focused ChIP array system. The data showed that infection with WT gonococci led to higher H3K9ac enrichment at the promoters of pro-inflammatory mediators' genes, many TLRs, adaptor proteins and transcription factors, suggesting gene activation when compared to infection with the Gc-HDAC-deficient mutant. Taken together, the data suggest that gonococci can exert epigenetic modifications on host cells to modulate certain macrophage defense genes, leading to a maladaptive state of trained immunity.
更多
查看译文
关键词
Neisseria gonorrhoeae,HDAC,infection,epigenetic,macrophage,survival,cytokines,chemokines,gonorrhea
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要