A Munc18-1 mutant mimicking phosphorylation by Down Syndrome-related kinase Dyrk1a supports normal synaptic transmission and promotes recovery after intense activity

SCIENTIFIC REPORTS(2020)

引用 2|浏览32
暂无评分
摘要
Phosphorylation of Munc18-1 ( Stxbp1 ), a presynaptic organizer of synaptic vesicle fusion, is a powerful mechanism to regulate synaptic strength. Munc18-1 is a proposed substrate for the Down Syndrome-related kinase dual-specificity tyrosine phosphorylation-regulate kinase 1a ( Dyrk1a ) and mutations in both genes cause intellectual disability. However, the functional consequences of Dyrk1a-dependent phosphorylation of Munc18-1 for synapse function are unknown. Here, we show that the proposed Munc18-1 phosphorylation site, T479, is among the highly constrained phosphorylation sites in the coding regions of the gene and is also located within a larger constrained coding region. We confirm that Dyrk1a phosphorylates Munc18-1 at T479. Patch-clamp physiology in conditional null mutant hippocampal neurons expressing Cre and either wildtype, or mutants mimicking or preventing phosphorylation, revealed that synaptic transmission is similar among the three groups: frequency/amplitude of mEPSCs, evoked EPSCs, paired pulse plasticity, rundown kinetics upon intense activity and the readily releasable pool. However, synapses expressing the phosphomimic mutant responded to intense activity with more pronounced facilitation. These data indicate that Dyrk1a-dependent Munc18-1 phosphorylation has a minor impact on synaptic transmission, only after intense activity, and that the role of genetic variation in both genes in intellectual disability may be through different mechanisms.
更多
查看译文
关键词
Molecular neuroscience,Neuronal physiology,Science,Humanities and Social Sciences,multidisciplinary
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要