Identification of promoter elements in the Dolichospermum circinale AWQC131C saxitoxin gene cluster and the experimental analysis of their use for heterologous expression

BMC Microbiology(2020)

引用 3|浏览17
暂无评分
摘要
Background Dolichospermum circinale is a filamentous bloom-forming cyanobacterium responsible for biosynthesis of the paralytic shellfish toxins (PST), including saxitoxin. PSTs are neurotoxins and in their purified form are important analytical standards for monitoring the quality of water and seafood and biomedical research tools for studying neuronal sodium channels. More recently, PSTs have been recognised for their utility as local anaesthetics. Characterisation of the transcriptional elements within the saxitoxin ( sxt ) biosynthetic gene cluster (BGC) is a first step towards accessing these molecules for biotechnology. Results In D. circinale AWQC131C the sxt BGC is transcribed from two bidirectional promoter regions encoding five individual promoters. These promoters were identified experimentally using 5′ RACE and their activity assessed via coupling to a lux reporter system in E. coli and Synechocystis sp. PCC 6803. Transcription of the predicted drug/metabolite transporter (DMT) encoded by sxtPER was found to initiate from two promoters, P sxtPER1 and P sxtPER2 . In E. coli , strong expression of lux from P sxtP , P sxtD and P sxtPER1 was observed while expression from P orf24 and P sxtPER2 was remarkably weaker. In contrast, heterologous expression in Synechocystis sp. PCC 6803 showed that expression of lux from P sxtP , P sxtPER1 , and P orf24 promoters was statistically higher compared to the non-promoter control, while P sxtD showed poor activity under the described conditions. Conclusions Both of the heterologous hosts investigated in this study exhibited high expression levels from three of the five sxt promoters. These results indicate that the majority of the native sxt promoters appear active in different heterologous hosts, simplifying initial cloning efforts. Therefore, heterologous expression of the sxt BGC in either E. coli or Synechocystis could be a viable first option for producing PSTs for industrial or biomedical purposes.
更多
查看译文
关键词
Dolichospermum circinale,Anabaena circinalis
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要