A Bond-Graph Metamodel: Physics-Based Interconnection Of Software Components

FORMAL ASPECTS OF COMPONENT SOFTWARE, FACS 2019(2020)

引用 3|浏览2
暂无评分
摘要
Composability and modularity in relation to physics are useful properties in the development of cyber-physical systems that interact with their environment. The bond-graph modeling language offers these properties. When systems structures conform to the bond-graph notation, all interfaces are defined as physical "power ports" which are guaranteed to exchange power. Having a single type of interface is a key feature when aiming for modular, composable systems. Furthermore, the facility to monitor energy flows in the system through power ports allows the definition of system-wide properties based on component properties. In this paper we present a metamodel of the bond-graph language aimed to facilitate the description and deployment of software components for cyber-physical systems. This effort provides a formalized description of standardized interfaces that enable physics-conformal interconnections. We present a use-case showing that the metamodel enables composability, reusability, extensibility, replaceability and independence of control software components.
更多
查看译文
关键词
Bond-graph, Metamodeling, Power port, Component software, Cyber-physical systems
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要