Novel neuroprotection using antioxidant nanoparticles in a mouse model of head trauma.

The journal of trauma and acute care surgery(2020)

引用 12|浏览8
暂无评分
摘要
INTRODUCTION:Free radicals and reactive oxygen species are related to deteriorating pathological conditions after head trauma because of their secondary effects. 2,2,6,6-Tetramethylpiperidine-1-oxyl (TEMPO) scavenges free radicals; however, this molecule is also toxic. Here, we have evaluated the neuroprotective effect of antioxidant nanoparticles, which consisted of a novel core-shell type nanoparticle containing 4-amino-TEMPO, that is, redox-active nitroxide radical-containing nanoparticles (RNPs). METHODS:Institute of Cancer Research mice were subjected to a head-impact procedure, randomly divided into four groups and intravenously (3 mg/kg) administered phosphate-buffered saline, TEMPO, micelle (a self-assembling block copolymer micelle without a TEMPO moiety), or RNP through the tail vein immediately thereafter and intraperitoneally at days 1, 3, and 5 after traumatic brain injury (TBI). The RNP distribution was detected by rhodamine labeling. Cognitive behavior was assessed using the neurological severity score and a rotarod test at days 1, 3, and 7 following TBI, and contusion volume was measured at day 7 after TBI. Free radical-scavenging capacity was analyzed by electron paramagnetic resonance on day 1 after TBI, and immunostaining was used to observe mobilization of microglia (Iba-1) and rescued neuronal cells (NeuN). RESULTS:Redox-active nitroxide radical-containing nanoparticle was detected in the microvessels around the injured area in the brain. Cognitive behavior assessment was significantly better, and contusion volume was significantly smaller in the RNP group compared with the other groups. Superoxide anion scavenging capacity was significantly higher in the RNP group, and neuronal loss was significantly suppressed around the injured area at day 7 after TBI. Furthermore, in the RNP group, neurodegenerative microglia production was suppressed at days 3 and 7 after TBI, whereas neuroprotective microglia production was higher at day 7 after TBI. CONCLUSION:The RNP administration after TBI improved cognitive behavior and reduced contusion volume by improving reactive oxygen species scavenging capacity. Therefore, RNP may have a neuroprotective effect after TBI. LEVEL OF EVIDENCE:Therapeutic test.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要