Bogoliubov many-body perturbation theory under constraint

Annals of Physics(2021)

引用 13|浏览13
暂无评分
摘要
In order to solve the A-body Schrödinger equation both accurately and efficiently for open-shell nuclei, a novel many-body method coined as Bogoliubov many-body perturbation theory (BMBPT) was recently formalized and applied at low orders. Based on the breaking of U(1) symmetry associated with particle-number conservation, this perturbation theory must operate under the constraint that the average number of particles is self-consistently adjusted at each perturbative order. The corresponding formalism is presently detailed with the goal to characterize the behaviour of the associated Taylor series. BMBPT is, thus, investigated numerically up to high orders at the price of restricting oneself to a small, i.e. schematic, portion of Fock space. While low-order results only differ by 2−3% from those obtained via a configuration interaction (CI) diagonalization, the series is shown to eventually diverge. The application of a novel resummation method coined as eigenvector continuation further increases the accuracy when built from low-order BMBPT corrections and quickly converges towards the CI result when applied at higher orders. Furthermore, the numerically-costly self-consistent particle number adjustment procedure is shown to be safely bypassed via the use of a computationally cheap a posteriori correction method. Eventually, the present work validates the fact that low order BMBPT calculations based on an a posteriori (average) particle number correction deliver controlled results and demonstrates that they can be optimally complemented by the eigenvector continuation method to provide results with sub-percent accuracy. This approach is, thus, planned to become a workhorse for realistic ab initio calculations of open-shell nuclei in the near future.
更多
查看译文
关键词
Perturbation theory,Many-body theory,ab initio,Open-shell nuclei
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要