Structure Factor of EuCl3 Aqueous Solutions via Coupled Molecular Dynamics Simulations and Integral Equations

JOURNAL OF PHYSICAL CHEMISTRY B(2020)

引用 1|浏览6
暂无评分
摘要
Identifying the structure of an aqueous solution is essential to rationalize various phenomena such as crystallization in solution, chemical reactivity, extraction of rare earth elements, and so forth. Despite this, the efforts to describe the structure of an aqueous solution have been hindered by the difficulty to retrieve structural data both from experiments and simulations. To overcome this, first, undersaturated EuCl3 aqueous solutions of concentrations varying from 0.15 to 1.8 mol/kg were studied using X-ray scattering. Second, for the first time, the theoretical X-ray signal of 1.8 mol/kg EuCl3 aqueous solution was simulated, with precise details for the complete range of scattering vectors using coupled molecular dynamics and hypernetted chain integral equations, and satisfactorily compared with the 1.8 mol/kg experimental X-ray scattering signal. The theoretical calculations demonstrate that the experimental structure factor is dominated by Eu3+-Eu3+ correlations.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要