Elucidation of leak-resistance DNA hybridization chain reaction with universality and extensibility.

NUCLEIC ACIDS RESEARCH(2020)

引用 31|浏览35
暂无评分
摘要
Hybridization chain reaction (HCR) was a significant discovery for the development of nanoscale materials and devices. One key challenge for HCR is the vulnerability to background leakage in the absence of the initiator. Here, we systematically analyze the sources of leakage and refine leak-resistant rule by using molecular thermodynamics and dynamics, biochemical and biophysical methods. Transient melting of DNA hairpin is revealed to be the underlying cause of leakage and that this can be mitigated through careful consideration of the sequence thermodynamics. The transition threshold of the energy barrier is proposed as a testing benchmark of leak-resistance DNA hairpins. The universal design of DNA hairpins is illustrated by the analysis of hsamiR-21-5p as biomarker when used in conjunction with surface-enhanced Raman spectroscopy. We further extend the strategy for specific signal amplification of miRNA homologs. Significantly, it possibly provides a practical route to improve the accuracy of DNA self-assembly for signal amplification, and that could facilitate the development of sensors for the sensitive detection of interest molecules in biotechnology and clinical medicine.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要