Mechanisms of innate events during skin reaction following intradermal injection of seasonal influenza vaccine.

Journal of proteomics(2020)

引用 8|浏览53
暂无评分
摘要
The skin plays a crucial role in host defences against microbial attack and the innate cells must provide the immune system with sufficient information to organize these defences. This unique feature makes the skin a promising site for vaccine administration. Although cellular innate immune events during vaccination have been widely studied, initial events remain poorly understood. Our aim is to determine molecular biomarkers of skin innate reaction after intradermal (i.d.) immunization. Using an ex vivo human explant model from healthy donors, we investigated by NanoLC-MS/MS analysis and MALDI-MSI imaging, to detect innate molecular events (lipids, metabolites, proteins) few hours after i.d. administration of seasonal trivalent influenza vaccine (TIV). This multimodel approach allowed to identify early molecules differentially expressed in dermal and epidermal layers at 4 and 18 h after TIV immunization compared with control PBS. In the dermis, the most relevant network of proteins upregulated were related to cell-to-cell signalling and cell trafficking. The molecular signatures detected were associated with chemokines such as CXCL8, a chemoattractant of neutrophils. In the epidermis, the most relevant networks were associated with activation of antigen-presenting cells and related to CXCL10. Our study proposes a novel step-forward approach to identify biomarkers of skin innate reaction. SIGNIFICANCE: To our knowledge, there is no study analyzing innate molecular reaction to vaccines at the site of skin immunization. What is known on skin reaction is based on macroscopic (erythema, redness…), microscopic (epidermal and dermal tissues) and cellular events (inflammatory cell infiltrate). Therefore, we propose a multimodal approach to analyze molecular events at the site of vaccine injection on skin tissue. We identified early molecular networks involved biological functions such cell migration, cell-to-cell interaction and antigen presentation, validated by chemokine expression, in the epidermis and dermis, then could be used as early indicator of success in immunization.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要