Biomechanical effects of over lordotic curvature after spinal fusion on adjacent intervertebral discs under continuous compressive load.

Wei Wang, Baoqing Pei,Yuyang Pei, Hui Li,Shibao Lu, Xueqing Wu,Nan Wu, Zhenpeng Shi, Yan Hao,Yubo Fan

Clinical biomechanics (Bristol, Avon)(2020)

引用 5|浏览19
暂无评分
摘要
BACKGROUND:To investigate the effects of over-lordotic curvature after lumbar fusion on the stress and deformations of the adjacent intervertebral discs under constant compressive loads. METHODS:Two-level ovine specimens-including three vertebral bodies with two discs-were divided into two groups: Group A (to observe external deformation) and Group B (to observe internal stress and deformations of the discs). Each group consisted of three models: a) intact model, b) increased stiffness + unchanged curvature fusion model, and c) increased stiffness + curvature fusion model. Models were tested at a vertebral pressure of 0.4 MPa for 30 min. Creep deformations and stress distributions in the superior adjacent intervertebral discs were analysed using finite element models. FINDINGS:Stiffness angle of the curvature model was increased by 5° and compared with the intact and stiffness models. In Group A, there was no significant deformation in the superior and adjacent intervertebral discs (P > 0.05), whereas creep deformations of the Group B discs increased significantly. Maximum deformations, with increases of approximately 3.7-fold and 2.8-fold in the vertical and horizontal directions, respectively, occurred at the anterior annulus fibrosus. The vertical and sagittal stress concentrations at the anterior annulus fibrosus had maximum differences of 1.0 MPa and 1.2 MPa, respectively. INTERPRETATIONS:Under a continuous compressive load, over-lordotic fusion significantly increases the stress and deformation gradient of the nucleus polposus and annulus fibrosus in the superior, adjacent intervertebral disc, increasing the risk of damage and secondary degeneration of these discs when subjected to daily static loads.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要