Shifted and Squeezed 8-bit Floating Point format for Low-Precision Training of Deep Neural Networks

arxiv(2020)

引用 46|浏览28
暂无评分
摘要
Training with larger number of parameters while keeping fast iterations is an increasingly adopted strategy and trend for developing better performing Deep Neural Network (DNN) models. This necessitates increased memory footprint and computational requirements for training. Here we introduce a novel methodology for training deep neural networks using 8-bit floating point (FP8) numbers. Reduced bit precision allows for a larger effective memory and increased computational speed. We name this method Shifted and Squeezed FP8 (S2FP8). We show that, unlike previous 8-bit precision training methods, the proposed method works out of the box for representative models: ResNet50, Transformer and NCF. The method can maintain model accuracy without requiring fine-tuning loss scaling parameters or keeping certain layers in single precision. We introduce two learnable statistics of the DNN tensors - shifted and squeezed factors that are used to optimally adjust the range of the tensors in 8-bits, thus minimizing the loss in information due to quantization.
更多
查看译文
关键词
neural networks,low-precision
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要